If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2-2q=7q^2+5q+18
We move all terms to the left:
8q^2-2q-(7q^2+5q+18)=0
We get rid of parentheses
8q^2-7q^2-2q-5q-18=0
We add all the numbers together, and all the variables
q^2-7q-18=0
a = 1; b = -7; c = -18;
Δ = b2-4ac
Δ = -72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*1}=\frac{-4}{2} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*1}=\frac{18}{2} =9 $
| -2=-w-3/4 | | 7p+5p=6 | | -2=-w-3÷4 | | 15x+3=21−120x | | 15x+3=21−120x. | | -4.5=-0.5x(x-7.1 | | -4.5=-0.5x(x-7.1) | | 5x-3-7x=x+8= | | 4x-5(2x-3)=2x | | 2/3x-12=22 | | -7(x+9)=-9(x+11) | | x2+6x-10=30 | | 8.2x-2.8=46.4 | | (6x-10)=(4x+40) | | 12b-11b=3(b+5)-3(b-3) | | 3(2)+4y=-10 | | -8(2x-1)=-28-4x | | x2.5=5 | | 25-100p=5 | | (6x-10)=(2x+20)x2 | | 0=16t2+60 | | -3(1-7m)+3m=-3(7-2m) | | -15x-18=-154 | | 6(w-3)=6 | | -3(r-4)=16-5r | | 3.9r-5.8r=0.38 | | 2(y-10)=10 | | 15x+1=40x-24 | | z^2=-2z-13 | | 5(m+1)=10 | | 10-2(7x-2)=-7(x-8) | | 2/r=11/18 |